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Experimental Investigation of Nonuniform
Heating and Heat Loss from a Specimen for the
Measurement of Thermal Diffusivity by the
Laser Pulse Heating Method

T. Yamane,' * S. Katayama,' and M. Todoki'
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Nonuniform heating effect and heat loss eflect from the specimen in the
measurement of thermal diffusivity by the laser pulse heating method have been
experimentally investigated using an axially symmetric Gaussian laser beam and
a laser beam homogenized with an optical filter. The degree of error is theoreti-
cally estimated based on the solution of the two-dimensional heat conduction
equation under the boundary condition of heat loss from the surface of the
specimen in the axial direction and the initial conditions of axially symmetric
nonuniform and uniform heating. A correction factor, which is determined by
comparison of the entire experimental and the theoretical history curves. is
introduced to correct the values obtained by the conventional ¢, » method. The
applicability of this modified curve-fitting method has been experimentally
tested using materials in the thermal diffusivity range 10" to I em?.s ™', The
experimental crror due to the nonuniform heating and heat loss was reduced to
approximately 3%.

KEY WORDS: laser pulse heating method: nonuniform heating: thermal dif-
fusivity.

1. INTRODUCTION

The laser pulse heating method for measuring thermal diffusivity was
developed by Parker etal. [1] in 1961 using the analytical solution for
one-dimensional heat flow under the following conditions.
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(a) The duration of the laser pulse is negligibly short compared to
the characteristic time of thermal diffusion.

{b) The front surface of the specimen is uniformly heated by a spa-
tially homogenized laser beam.

{c) The specimen is adiabatic during measurement after the laser
energy is absorbed.

(d} The specimen is uniform (in geometry)} and homogeneous.

{e) The specimen is nontransparent to the laser beam and to thermal
radiation.

The thermal diffusivity, «, i1s calculated from the measured time-tem-
perature curve of the back surface of the specimen based on the “1,,
method” using

b2
x=1.370 = (1
n_‘rl:

where b is the thickness of the specimen and ¢, , is the half-rise time defined
by the interval required for the back-surface temperature to reach one-half
of the maximum temperature rise. Currently, the laser pulse heating
method is generally accepted as the standard method for measuring the
thermal diffusivity of solid materials [ 2]. However, some of the above con-
ditions, particularly conditions (a) and (b), are not entirely satisfied in the
actual measurements. For condition (a), the finite duration of the laser
pulse effect can be corrected by Azumi and Takahashi’s [3] center-of-
gravity of the pulse method. For condition (b), radiative heat loss from the
specimen surface is unavoidable, especially in high-temperature
experiments. Some algorithms which take the radiative heat loss into con-
sideration have been theoretically developed by, for example, Cowen [4].
Cape and Lehman [ 5], Heckmann [6]. and Clark and Taylor [7]. Cape
and Lechman’s paper has been referenced quite extensively [8-11] as a
correction to the theory developed by Parker etal. They account for
radiative heat loss by replacing the factor 1.370 in Parker’s relationship Eq.
(1) by a function of the Biot number. These authors did not consider non-
uniform heating, i.e., condition (c), and recently it was pointed out that
Cape and Lechman had made a mathematical error in their analysis [12].
For condition (c¢), analytical calculation of nonuniform heating has been
made by Watt [13] and McKay and Schriempf [ 14]. Based on their solu-
tion, the nonuniform heating error for specimens of various dimensions has
been calculated under various energy distributions of heating by Azumi
etal. [15] and Baba et al. [16, 17]. Recently, Cezairliyan et al. [ 18] have
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developed a new system for accurate measurements of thermal diffusivity.
In their data analysis, the entire region of the temperature history curve is
fitted to Cape and Lehman’s theoretical solution to correct for the radiative
heat loss. They called this procedure the “curve-fitting method.” The par-
ticular advantage of the curve-fitting method over other methods is that the
quality of experimental data can be checked by observing the discrepancy
between the experimental and the theoretical curve. As mentioned above,
some investigators have theoretically estimated nonuniform heating with
heat loss from the specimen, but this is not yet experimentally confirmed.
We have experimentally confirmed the degree of error resulting from non-
uniform heating using an axially symmetric Gaussian laser beam, and
developed a modified curve-fitting method to correct for nonuniform heat-
ing and heat loss from the specimen simply using the solution by Watt

[13].

2. THEORY

Figure 1 shows the schematic diagram of the geometry for the pulse
heating method which takes nonuniform heating and radiative heat losses
into consideration, where a is the sample radius and b is the sample thick-
ness. The heat conduction equation is

FT(x,r 1) 10T(x,rt) T(x,rt x,rt) 10T(x, rt
(x, 1 )+_' (x, r )+ (x, ! )+Q(vr )__ (x,r, 1)

=0 2
or? r or ox* oC o ot (2)

x%O x#b

Q(r) 6 (t)

Fig. 1. A schematic diagram of
the geometry for the pulse heating
method. The energy Q(r) is instan-
tancously supplied to the {ront
surface of the specimen (x=0) at
time 0. There is some radiative
heat loss from the front and back
surfaces of the specimen.

840 18 1-18
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where Q(x,r, 1) is the energy absorbed by the specimen, C is the heat
capacity of the specimen, and « is the thermal diffusivity of the specimen.
If there is radiative heat loss from the front and back surfaces, the bound-
ary condition can be approximated by

oT(x,r,1) L
,_M-}-—T(x,r',t):() at x=0 (3)
dx b
Mert, Lpcrn=0 at x=b *
Ox b

where L is the radiative heat loss parameter, called the Biot number, and
1s defined as

4ea T3
L=— (5)
where ¢ is the emissivity of the surface, o is the Stefan—-Boltzmann constant,
T is the steady-state temperature of the specimen, and 4 is the thermal con-
ductivity of the specimen. Since the temperature difference between the sur-
face of the specimen and the environment is small for the pulse heating
method, the usual fourth-power law of radiation heat transfer may be
approximated by the above linear relation [ 13]. The radiative heat loss in
the radial direction may be neglected, since there is only a small gap
between the cylindrical side of the specimen and the inside wall of the
holder in the actual experiment, and it is estimated that the radiative heat
loss from the side surface of the specimen is smaller than heat losses from
the front and back surfaces of the specimen. The front surface of the
specimen is subjected to pulsewise heating, ie., the initial condition is

Q(x, 1, 1)=Q(r) at =0 for x=0 (6)

where (Q(r) is the energy absorbed at r, and the analytical solution of
Eq. (2) is given by Watt [ 13] as the product of the component solutions,

T(x,r, t)=ToTulx, 1) T Ar, 1) (7)

where T, = Q,/C, the equilibrium temperature increase, T.(x, t) is the x
component, T,(r, ) is the r component, and Q, is the total energy absor-
bed by the specimen. T.(x, 1) is given by

(]

T(xn= 3 7,0) V,x exp (20 (8)

n=1
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where

_{2ABr+ L} { B, cos B,{x'/b) + Lsin B,(x'/b)}

Y,,(U\’,) - 2 2 2 2 2 2 i2 9
{(Bi+ LN+ L+ Ly+ L(B2+ L*)}'7? )
B, (n=1,2, 3,..) are positive roots of
2
tan /3u=/);,2'/))_"iz (10)
and 7. 1s the characteristic time defined by
b2
t.=— (1)
T

Equations (8)-(11) show that the nondimensional time, ¢/t., dependence of
T (x.t)is a function of x and L. T (r, ¢} is given by

2 (ru L JAZrja) L bt
T, . == . d 4] i _ 2
(r, 1) = {L rg(r)dr+ 3, IZ) exp( Z: ———nzaztc>

i=1
xr rg(r) Jy( Z;rja) dr} (12)
0

where g(r) is the axially symmetric energy distribution absorbed by the
specimen surface, J, is the Bessel function of the first kind of order 0, and
Z (i=1,2,3,...) are positive roots of

J(Z)=0 (13)

where J, is the Bessel function of the first kind of order 1. In Egs. (12)-(13)
the definite integral term with respect to r can be integrated numerically or
analytically, and is independent of /1., if the shape of g(r) in the region
from r=0 to r=a is determined experimentally. In this integration g(r)
need only be axially symmetric. Equations (12) and (13) show that the
nondimensional time, #/r., dependence of T,(x, 7) is a function of r and the
ratio of thickness to radius b/a, if g(r) is axially symmetric.

In the actual experiment, a radiation detector which detects the
average temperature of the region of interest is often used as the tem-
perature detector. From Eq. (7), the back surface temperature response,
T..(b/a, L, t), which is within a circle located at the center of the specimen,
can be estimated by

Tobs 2F
T.(bja, L, t)=T,T.(b, 1) j LT t)dr (14)

0 Fobs
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where r,. is the radius of the detected area, b/a is the shape parameter
related to T.(r, ) and L is the heat loss parameter related to T (x, ¢). If the
specimen surface is uniformly heated, ie., g(r)=1, then T (r,f)=1, and
T..(b/a, L, t) is represented as

T..(bja, L, tYy=T,T (b, t) (15)

which is independent of b/a. In the following discussion, the shape
parameter, b/a is considered 0 for the uniform heating. If there is no heat
loss from the specimen, ie., L=0, T (b, 1) is given by

T\.(b,r)=1+2Z(—l)"exp<—:;;> (16)
n=1 <

Substituting Eq. (16) into Eq. (15), we obtain the analytical solution based
on the conventional r, , method [1]. If the specimen surface is uniformly
heated, i.e., b/a =0, and there is no heat loss from the specimen, i.e., L =0,
the time, 7,.(0,0), at which the calculated temperature response,
T..(0,0, 1), reaches T,/2 is

1, (0, 0) = 13701, (17)

which is the conventional 7, , result given in Eq. (1).

3. APPARATUS

The experiments were performed using a commercially available
apparatus (Shinku-Riko Inc., Type TC-7000) for the thermal diffusivity
measurements. A ruby laser is used for pulse heating the specimen. The
irradiated area is a circle about 12 mm in diameter, the maximum energy
per pulse is 7 J, and the pulse duration is about 3 ms. The optical center
of a ruby laser and the specimen are aligned based on the energy distribu-
tion absorbed by the specimen’s surface which is experimentally determined
(see Section 5). Time 0 was set at the center of gravity of the laser pulse
energy on the time scale to correct for the finite pulse effect [3]. A hand-
made optical reduction filter is used to improve the spatial energy distribu-
tion of the ruby laser. The optical filter is an approximately 1.5 x 3 x 3-mm”*
rectangular solid made of acrylic resin and cuts out 70% of the energy of
the laser incident on the surface. The optical filter is placed on the optical
axis outside the furnace part. An InSb infrared radiation detector is used
as the temperature detector; its response time is about 5 us. The tantalum
slit is placed between the specimen and the detector to avoid direct irradia-
tion of the detector by the ruby laser. The slit has a 5-mm-diameter hole
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through its center. The optical centers of the detector and the specimen are
aligned using a guide beam system, which can be placed at the center of the
specimen’s position. Using this system, the radius of the detected area on
the specimen, r., in Eq. (14), is 2.5 mm, which is about half the specimen
radius, ie., r,,=a/2. The electronically amplified analog signal is
digitized and stored in a transient-wave memory with a capacity of 8 k
words of 10 bits each. The data are then transferred to a personal computer
for processing. A specimen is placed vertically in the specimen holder, and
the specimen chamber is evacuated to about 10~ * Torr using a rotary
pump. The specimen and the specimen holder make only pinpoint contact,
thus heat conduction between them can be neglected.

4. SPECIMEN

Our procedure has been developed and applied to the measurement of
the four specimens shown in Table I. The specimen diameter is 10 mm for
all materials. Specimens of various thicknesses are prepared in order to
check the effect of nonuniform heating. Dry graphite carbon is sprayed on
the front surface to absorb the energy of the beam and on the back surface
to increase the emissivity.

5. EXPERIMENTS

The distribution of energy absorbed by the specimen surface, g(r),
must be determined to calculate the temperature-response curve using Eq.
(14). We experimentally determined g(r) according to the following steps.

(a) A dry graphite/carbon-sprayed copper of cubic block about
1 x1x1 mm?is attached to a platinum platinum-rhodium ther-
mocouple wire of 0.1-mm diameter.

(b) The cubic block is placed the position of the center of the
specimen in the present system without the specimen.

(c) The ruby laser is irradiated and the time dependence of the tem-
perature rise of the copper block is determined.

(d) The cooling part of the observed curve is least-squares fitted to
the exponential curve.

(e) The exponential curve is extrapolated to Time 0 and T,,(0) is
determined.

(f) The copper block is shifted to a position at a distance r away
from the center of the sample in the horizontal or vertical direc-
tion.
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(g) To.(r) 1s determined in the same manner as steps (b)—(d).
(h) In the region —1.5a <r<1.54, steps (b)~(f) are repeated.
(i} The energy distribution is estimated using

Tmux( r )

Tl“ilx(o) ( 18)

glry=

Figure 2 shows the distribution of energy absorbed by the specimen
surface irradiated directly by the ruby laser. The center of the specimen sur-
face is intensely heated. The dashed line in Fig. 2 shows the values
calculated using

g(r>=exp<— 0';5> (19)

assuming a Gaussian distribution. We call this nonuniform heating and
calculate the temperature response using Eq. (19). We attempted to
improve the uniformity of the energy absorbed by the specimen surface by
reducing the intensity of the laser around the center using an optical reduc-
tion filter. Figure 3 shows the distribution of energy absorbed by the
specimen surface, when the nonuniform ruby laser shown in Fig. 2 is
irradiated through a handmade optical reduction filter. Figure 3 shows that
in the region, —a <r <a the specimen surface is more uniformly heated.
Figure 4 shows an example of the theoretical curve for the nonuniform
heating calculated using Eq. (14) with Eq. (19) under the conditions of
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Fig. 2. Energy distribution of the ruby laser used in
this work. The dashed line shows the curve calculated
using Eq. (19}
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Fig. 3. Energy distribution of the ruby laser used in
this work homogenized with a handmade optical reduc-
tion filter.
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Fig. 4. Example of the theoretical curve lor the nonuniform heating
calculated using Eq. (14) with Eq. (19) under the conditions of radius
of the detected area r = «2. shape parameter h/a = 0.6 and the heat
loss parameter L=0.0 and 0.3, and an example of the theoretical
curve for the uniform heating calculated using Eq. (15) under the
conditions of heat loss parameter L =0.00 and 0.3.
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radius of the detected area r,, =a/2, shape parameter b/a =0.6, and heat
loss parameter L =0.0 and 0.3, and an example of the theoretical curve for
uniform heating calculated using Eq. (15) under the conditions of L =0.0
and 0.3. Figure 4 shows that the half-time r, ,/r. for axially symmetric
Gaussian nonuniform heating, as shown in Fig. 2 or Eq. (19), is shorter
than that of the conventional method, ie., 1, {(b/a, L)/t.=1217 for
b/a=0.6 and L =0.0. Figure 4 show that the half-time ¢, »/1. for both non-
uniform and uniform heating becomes short as the heat loss effect becomes
large, ie., t, s(b/a, L)/t.=1.076 for b/a =0.6 and L =0.3 under nonuniform
heating conditions, and ¢, »(b/a, L)/t.=1.165 for L=0.3 under uniform
heating conditions. This estimation agrees with the other reported theoreti-
cal considerations [4-7, 13-17]. Figure 4 shows that the time dependence
of the back surface under the conditions of axially symmetric Gaussian
nonuniform heating without any heat loss from the specimen is apparently
the same as that under the conditions of uniform heating with heat loss
from the specimen. This resemblance of the temperature history curve for
axially symmetric Gaussian nonuniform heating and heat loss effect leads
to the risk of misinterpreting the axially symmetric Gaussian nonuniform
heating effect as the heat loss effect, if the distribution of energy absorbed
by the specimen has not been confirmed. It is concluded that in the actual
experiment the distribution of energy absorbed by the specimen must be
checked in order to apply the theoretically derived correction method to
correct for the heat loss effect, which does not take account of the non-
uniform heating effect.

To correct for the nonuniform heating and heat loss effect estimated
above, we introduce the correction factor

_ fl 3(17/(1, L) _ r| 3(b/a, L)
Kibra LY== " 0.0y = 13700, (20)

The correction factor K(b/a, L) replaces the factor 1.370 in Parker’s rela-
tionship Eq. (1) by a function of b/a and L. Using this factor, thermal
diffustvity can be determined using

a=a*K(b/a, L) (21)

where a* is the apparent thermal diffusivity derived from the observed
curve using
b?_
a* =1.370 — (22)
2

t2

which is that of the conventional ¢, , method.
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Fig. 5. Heat loss parameter dependence of the correction tac-
tor K(hlu, L).

Figure 5 shows how the correction factor depends on b/a and L for
nonuniform heating from Eq. (14) and L for uniform heating from Egq.
(15). From Fig. 5, it is clear that the thermal diffusivity obtained by the
conventional ¢, , method is 11% smaller than the true value for axially
symmetric Gaussian nonuniform heating, b/a =04, absent heat loss.
Although the shape parameter, b/a, can be determined easily from the
dimensions of the specimen, the heat loss parameter, L, must be deter-
mined from the comparison of observed and theoretical normalized time
dependence curves by the following steps.

(a} The time axis of the observed temperature rise T,,{f) is nor-
malized so that 7, ,/t* =1.370, where ¥ is the apparent charac-
teristic time defined as

bl

t* 5
oo

<

(23)

where o* is the apparent thermal diffusivity obtained from Eq.
(22).

(b) The object function defined as
. \/Z:": I{ Tnhs(ri/t: )/Tmux - Tcul( b/{l, L’ ,i/r:*k )/T 12

F(b/CI,L)— " max J (24)

is calculated, where T (b/a, L, t/1*)/T,... 1s the calculated curve,
the time axis normalized so that 1, ,(b/a, L)/t¥ =1.370.
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{c) The heat loss parameter dependence of F(b/a, L) is calculated.

(d}) The curve which has minimum F(b/a, L) is adopted as the best-
fit curve.

Figure 6 shows examples of the theoretical curves, the time axis normalized
so that r, 5(b/a, L)/t¥ =1.370, for nonuniform heating and uniform heating,
of which original time dependence is shown in Fig. 4.

A time normalization technique using f,,, similar to the present
method has been utilized by other researchers to correct for heat loss.
Clark and Taylor [ 7] used a few points of the heating part of these curves
and Cowan [4] used a few points of the cooling part of these curves. In
contrast to these methods, the present method uses the entire curve in Eq.
(24). This method is superior to the other methods for the following
reasons, as for the curve-fitting method { 18].

(a) The other methods may be more sensitive to experimental noise
than the present method when determing the correction factor.

(b) When using the present method, the quality of the experimental
data can be checked by observing the discrepancy between the
experimental and the theoretical curves.

Y
[=]

o
(%2
L L AL AL B B I

Uniform Heating,L=0.0
Nonuniform Heating,b/a=0.6,L=0.0

Uniform Heating,L=0.3 .
Nonuniform Heating,b/a=0.6,L=0.3

Temperature Rise T(t)/T .,

T T T T T T T

o©
o

—

N B ST S SN ST S A S S ST U BT

0 5 10
Time t4;
Fig. 6. Example of the theoretical curve, the time axis normalized so

that 1, s{h/a, L)/1* = 1.370, for nonuniform heating and uniform heating,
of which the original time dependence is shown in Fig. 4.
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As for reason (b), in the actual experiment, if the discrepancy between the
observed and the theoretical curves becomes large, we must check the
experimental conditions, e.g., the energy distribution absorbed by the
specimen surface. We call the present procedure the modified curve-fitting
method to account for the nonuniform heating.

Figure 7 shows a typical example of the observed data, time axis nor-
malized so that 1, .(b/a, L)/t¥ =1.370, for molybdenum (2.542 mm in
thickness at 298.15K) under the nonuniform heating condition at
298.15 K. The apparent thermal diffusivity a* =0.631cm®-s ', and the
apparent characteristic time ¥ =10.37 ms. The dashed line shows the
theoretical curve calculated using Eq. (14) with Eq. (19) for b/a=0.5 and

c

RS

kS

>

B [

. O
1.0
PO
€ b
; o
=
O -
R +
o 0.5
o
5 |
c [
o [

g' - —— Observed Curve
R A Theoretical Curve
0.0 —
-lIlIllllllllllllllllllllllIlIIIII
0 5 10 15
Time t/t.

Fig. 7. Example ol the observed curve, the time axis normalized so that
[ alhia Ly ¥ =1.370, for molybdenum (2.542 mm in thickness at 298.15 K)
under nonuniform heating conditions at 298.15 K. The dashed line is the
theoretical curve, the time axis normalized so that ¢, s(hia. L) 1¥ = 1.370. using
Eq. (14) with Eq. (19} for shape parameter ha =05 and heat loss parameter
L =0.0. The apparent thermal diffusivity x* obtained by the conventional ¢, 5
method is 0.631 cm*- s~ ', the apparent characteristic time 1* is 10.37 ms, and
the corrected thermal diffusivity « obtained by the present modified curve-fitting
method is 0.560 cm*.s~',
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L =0.0, time axis is normalized so that ¢, (b/a, L)/t¥ =1.370. Since, under
the above condition, the correction factor K(b/a, L)=0.8877, the true
thermal diffusivity a equals 0.560 cm” - s ~'. The quality of the measurement
can be judged by the fit between the observed and the theoretical curve.
This result shows that Eq. (14) with Eq. (19} accurately represents the time
dependence of the temperature rise of the back surface under the non-
uniform heating conditions and thus the correction factor K(b/a, L) should
correct for the nonuniform heating.

Figure 8 shows a typical example of the observed data, time axis nor-
malized so that ¢, -(b/a, L)/t¥ =1.370, for the same specimen as shown in
Fig. 7 with uniform heating at 298.15 K. The difference in the shapes of the
observed temperature rise curves in Fig. 7 and Fig. 8 reflects the difference
in the spatial distribution of energy absorbed by the specimen surface. The

0.05

o
Deviation

-0.05

—_
[=]

o
m
LA B S B B S B I (L B B B B B B M BRLAN B S |

—— Observed Curve
----- Theoretical Curve

Temperature Rise T(t}/Tmax

0.0
s b e g b e b
0 5 10 15
Time t/t.

Fig. 8. Example of the observed curve, the time axis normalized so that
1y slb/a. L)/t¥ =1.370, for the same molybdenum specimen as shown in Fig. 7
under uniform heating at 298.15 K. The dashed line is the theoretical curve, the
time axis normalized so that t, s{b/a. L}/1* = 1.370. calculated using Eq. (15) for
heat loss parameter L =0.0, i.e. Eq. (16). The apparent thermal diflusivity «*
obtained by the conventional ¢, method is 0.557 cm®.s~'. and the apparent
characteristic time ¢ is 11.76 ms. Under this condition. a* and +} equal « and /...
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apparent thermal diffusivity a* =0.557 cm®-s ', and the apparent charac-
teristic time 1¥=11.76 ms. The dashed line shows the theoretical curve
calculated using Eq. (15) for L=0.0, i.e, Eq. (16), which corresponds to
Parker’s analytical solution. The observed curve agrees with the theoretical
curve in this time range. It is concluded that under this condition, a*, t*,
and K(b/a, L)=ua, t., and 1.0, respectively. This result shows that the
improved ruby laser can be considered as a uniform heat source, and that
an optical filter succeeds in reducing the nonuniformity of the laser.
Figure 9 shows a typical example of the observed data, time axis nor-
malized so that ¢, 5(b/a, L)/t¥ =1.370, for MACOR (2.486 mm in thickness
at 298.15 K) under uniform heating conditions i.e., b/a =0, with heat loss
at 873.15 K. The apparent thermal diffusivity a*=6.59x 10 *cm”.s ',
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Fig. 9. Example of the observed curve, the time axis normalized so that
1y alhja, L)/1F =1.370, for MACOR (2.486 mm in thickness at 298.15 K ) under
uniform heating with heat loss at 873.15 K. The dashed curve is the theoretical
curve, the time axis normalized so that ¢, 5(h/a. L)/1¥ = [.370, using Eq. (15) for
heat loss parameter L =0.18. The apparent thermal diffusivity a* obtained by
the conventional ¢,.» method is 6.59 x 10 ~*cm?*.s ~ ', the apparent characteristic
time 7} is 1.302 s, and the corrected thermal diffusivity o obtained by the present
modified curve-fitting method is 5.88 x 10 ~*cm?-s™".
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and the apparent characteristic time 7¥ = 1.302 s. The heat loss parameter
i1s determined by the present modified curve-fitting method. Figure 10
shows the relationship between the heat loss parameter L and the object
function F(b/a, L) [see Eq. (24)] for the curves shown in Fig. 9. The object
function F{b/a, L) is calculated under the following conditions.

Time step [ =(1,, ,/t¥)—{(1,/1¥)}]: 005
Time range: H/1X=00S,1,/t¥=1.50

Number of data points ( =n): 300

Figure 10 shows that the theoretical curve for L =0.18 gives the best match
to the experimental curve. Since the correction factor K{b/u, L) equals
0.8926 for L =0.18, the true thermal diffusivity a =5.88x10 *cm?.s '
The dashed line in Fig. 9 shows the theoretical curve calculated using Eq.
{15) for L=0.18, time axis normalized so that 7, .(b/u, L}/t¥ = 1.370. This
result shows that the present modified curve-fitting method accurately
represents the time dependence of the temperature rise of the back surface
with heat loss from the specimen, and thus the correction factor K{(b/a, L)
should accurately correct for heat loss, similarly to the case of nonuniform
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Fig. 10. Heat loss parameter dependence of the object
function F(h/u. L) for the data shown in Fig. 9. As the
specimen surface is uniformly heated, the shape parameter.
hiu. equals 0 according to our delinition {for details, see.
the text). The minimum at L =0.18 determines the value of
the Biot number L used to generate the dashed curve in
Fig. 9.
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heating. Table II lists thermal diffusivity values obtained by the present
method compared with those calculated by commonly used methods to
correct for heat loss under the uniform heating condition using the data
shown in Fig. 9. There is essentially no difference between the thermal dif-
fusivity values after heat loss correction, which is natural as all methods are
based on the same theoretical formula. The particular advantage of the pre-
sent method is that the quality of experimental data can be checked by
observing the discrepancy between the experimental and the theoretical
curve as shown in Fig. 9 using the object function as shown in Fig. 10.
Figure 11 shows the thermal diffusivity at 298.15 K obtained by the
following three methods: (a) the conventional ¢, , method under non-
uniform heating conditions, (b) the present modified curve-fitting method
under nonuniform heating conditions, and (c) the present modified curve-
fitting method under the uniform heating conditions. For all the samples,
as the shape parameter increases, the thermal diffusivity obtained by the
conventional ¢, , method under nonuniform heating condition increases.
For aluminum and molybdenum, this tendency results from the axially
symmetric Gaussian nonuniform heating effect, which has been theoreti-
cally estimated from K(b/a, L) dependence on b/a and experimentally con-
firmed from the agreement between the shape of the entire observed tem-
perature history curve and the theoretical curve without heat loss effect for
all of these specimens as in Figs 7 and 8. For aluminum and molybdenum,
thermal diffusivities obtained by the present modified curve-fitting method
are independent of the shape parameter and energy distribution of the
heating source and agree with the reported values [19] within 3%. For

Table H.  Comparison Between the Thermal Diftusivity Values Corrected for Heat Loss
Effect Based on Different Data Analysis Algorithms from the Temperature History Curve
Shown in Fig. 9 Under Uniform Heating Conditions

Thermal dittusivity, x

Data analysis algorithms {cm?-s7")
Present method 588 % 107°
Cowan [4]
T(50, 5)/ Ty 2) 583x107?
T /Tl ) 583 x 1073
Clark and Taylor [7]
I 6.0l x 071
tosiTus 601 x107*

Conventional 1, ; method
{does not include heat loss in lormulation) 6.59%x107*
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Fig. 11. The relationships between the thermal diffusivity «nd shape
parameter for aluminum, molybdenum. alumina, and MACOR at
298.15 K. Open triangles represent the experimental values obtained
by the conventional ¢, , method under nonuniform heating condi-
tions. apen circles represent the experimental values obtained by the
present modified curve-fitting methed under nonuniform heating con-
ditions and [illed circles represent the experimental values obtained
by the present modilied curve-fitting method under uniform heating
conditions. Dashed lines show the values reported in Refs. 19 and 20.

alumina and MACOR, the shape parameter dependence of the thermal
diffusivities obtained by the conventional 7, , method results not only from
the axially symmetric Gaussian nonuniform heating effect but also from
heat loss. It should be emphasized that the distribution of energy absorbed
by the specimen surface must be checked to confirm the degree of the

N400I8 1=
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axially symmetric Gaussian nonuniform heating effect and heat loss effect
simultaneously in the actual measurement For alumina and MACOR, ther-
mal diffusivities obtained by the present modified curve-fitting method are
independent of the shape parameter and energy distribution of the heating
source, and the value for alumina agrees with the reported values [20]
within 3 %.

Figures 12 and 13 show the temperature dependence of the thermal
diffusivity of molybdenum and MACOR, respectively. Open symbols repre-
sent the experimental values obtained by the present modified curve-fitting
method under nonuniform conditions and filled symbols represent the
experimental values obtained by the present modified curve-fitting method
under uniform conditions. The dashed line shows the values reported in
Ref. 19. The values obtained by the present modified curve-fitting method
are independent of the shape parameter and agree with the reported values
[ 197 within 3% under uniform and nonuniform heating conditions. In this
experiment the maximum heat loss parameter L is 0.29 for MACOR at
1098.15 K. It is concluded that our present procedure sufficiently corrected
for appreciable heat loss effect with an axially symmetric Gaussian non-
uniform heating effect above room temperature.
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Fig. 12. Temperature dependence of the thermal diffusivity of
molybdenum. Open symbols represent the experimental values
obtained by the present modified curve-fitting method under non-
uniform heating conditions and filled symbols represent the
experimental values obtained by the present modified curve-fitting
method under uniform heating conditions. The dashed line shows the
values reported in Ref. 19.
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Fig. 13. Temperature dependence of the thermal diffusivity of
MACOR. Open symbols represent the experimental values
obtained by the present meodified curve-fitting method under
nonuniform heating conditions, and filled symbols represent
the experimental values obtained by the present modified
curve-fitting method under uniform conditions.
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